
Journal of Physics:
Conference Series

     

PAPER • OPEN ACCESS

Reinforcement Learning for Mobile Robot’s
Environment Exploration
To cite this article: Sean W H Teoh et al 2023 J. Phys.: Conf. Ser. 2641 012003

 

View the article online for updates and enhancements.

You may also like
An overview: on path planning
optimization criteria and mobile robot
navigation
Anis Naema Atiyah, Noraziah Adzhar and
Nor Izzati Jaini

-

A multi-strategy improved sparrow search
algorithm for mobile robots path planning
Jingkun Fan and Liangdong Qu

-

RETRACTED: Obstacle Avoidance
Algorithms: A Review
Talabattula Sai Abhishek, Daniel Schilberg
and Arockia Selvakumar Arockia Doss

-

This content was downloaded from IP address 103.86.131.124 on 13/11/2024 at 07:01

https://doi.org/10.1088/1742-6596/2641/1/012003
/article/10.1088/1742-6596/1988/1/012036
/article/10.1088/1742-6596/1988/1/012036
/article/10.1088/1742-6596/1988/1/012036
/article/10.1088/1361-6501/ad56b2
/article/10.1088/1361-6501/ad56b2
/article/10.1088/1757-899X/1012/1/012052
/article/10.1088/1757-899X/1012/1/012052
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvXbu59toilKqHxNOz1dbo-T2fusRgkxbICP0SOvjA3RfDPIF5ZX1h_Nu-FkKcz7SY5OrMGm1vLLs8RJgOnb_hcgtj1rgVeRBff9A2TDjLFUzxVe_VElhwizA_6kgVL71HvIhC3oz3miqyQqu-lDCo2hfv37LrYtJWffEmhDhqOJeseSfNzpIqyV7AosrqxWLgpkfmClu6JjQnhH0PHmnl7PiT3hbvqk-1bqw4a0HU82ImSPsh74DLPzNSLTO069v6glqhPPC46xXas2uxbxRqoK2K78cmuSAEym9B7WNF-zwJqgVwFvTA6bE_3_j02a0JhLXnRfTN4mZgZ5VD17O-LF091xPWD5f7RJl0peAiI&sig=Cg0ArKJSzDXft-TPh71x&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.electrochem.org/247/%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3DIOP_247_abstract_submission%26utm_id%3DIOP%2B247%2BAbstract%2BSubmission


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

8th International Conference on Man Machine Systems 2023
Journal of Physics: Conference Series 2641 (2023) 012003

IOP Publishing
doi:10.1088/1742-6596/2641/1/012003

1

 
 
 
 
 
 

Reinforcement Learning for Mobile Robot’s Environment 

Exploration 

Sean W H Teoh1, Kamarulzaman Kamarudin1,2, Nasr A N Ali1, Muhammad M M 

Zainal1, Mohd R Manan1, Syed M Mamduh2 

 
1 Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis, Kampus 

Pauh Putra, 02600 Arau, Perlis, Malaysia 
2 Centre of Excellence for Advanced Sensor Technology (CEASTech), Universiti 

Malaysia Perlis, Arau 02600, Perlis, Malaysia. 

 

E-mail:  kamarulzaman@unimap.edu.my 

 

Abstract. Mobile robots are being are being applied in various industries to perform repetitive 

or dangerous tasks for humans to carry out. Autonomous mobile robots are more capable than 

automated guided vehicles (AGV) due to their ability to be adaptable to their environment which 

is important for exploration of unknown environments. It is difficult to program autonomous 

mobile robots to adapt to various situations it may face, thus machine learning can be applied to 

allow a mobile robot to learn how to navigate through environments by itself. Reinforcement 

learning is applied in this project so that a differential drive mobile robot can learn how to 

navigate through its environment while avoiding collision with surrounding walls and obstacles. 

The reinforcement learning process is simulated by using the Robot Operating System (ROS) 

and its simulator Gazebo. Controlled simulation environments are created using Gazebo for the 

purposes of training and performance testing. Simultaneous Localization and Mapping (SLAM) 

will be applied to generate a map of the environment. At the end of this project, the Turtlebot3 

is able to map smaller controlled environments ranging between 18m2 to 27m2 without colliding 

with the surrounding walls. 

1. Introduction 

Robots are increasingly being applied to various aspects of human lives, from waiter robots in 

restaurants [1] to numerous lifting robots in warehouses [2], where robots assist humans to carry out 

repetitive tasks. Under most circumstances, robots can be pre-programmed to carry out the associated 

task with a higher efficiency than their human counterparts under optimal and controlled environments 

[3], however in reality there are many external forces or conditions that could affect the performance of 

the robot. For example, facing unforeseen obstacles or simple repositioning [4] which would be of little 

issue to a human but could completely stop some robots from performing their task without human aid. 

To overcome this issue, autonomy of robots has become one of the most popular fields of study in recent 

years [5]. An autonomous mobile robot means it is capable of performing a task that involves some 

decision making without human supervision. An important aspect of autonomous mobile robots is the 
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ability to move from one point to another safely and efficiently, this is due to the numerous approaches 

that can be taken and the robot has to make the decision itself, unlike automated guided vehicles which 

have predetermined paths usually defined by special tape [6]. This issue is known as path planning and 

the mobile robot requires information about its current location, surrounding environment and target 

location before it can select an action, this is referred to as localization and mapping [7]. Rather than 

program the mobile robot for numerous possibilities it could face, machine learning can be applied so 

that the mobile robot can learn to interact with the given environment by itself, this is called 

reinforcement learning [8]. Reinforcement learning is suitable for this application because the mobile 

robot is an agent that is interacting with its environment and learns which actions are favorable through 

positive or negative feedback designated by a reward system. 

2. Methodology 

2.1. Simulation Environment 

ROS is an open-source program, and it was selected as to focus on the software rather than the hardware 

aspects of mobile robots. An openly available simulated differential drive mobile robot is also needed 

for this project. The Turtlebot3 simulated mobile robot model shown in Figure 1 was chosen for this 

project as it can be used with ROS Noetic as well as being a small differential drive mobile robot that 

comes with its own Lidar sensor and a SLAM program, g-mapping to be specific. 

 

 
Figure 1. Turtlebot3 

 

Environments are also needed, through the use of the building editor tool available in Gazebo 

simulator, simple training environments are created, consisting of walls with 1.0m in height and 0.1m 

thickness with varying lengths ranging from 2.0m to 10.0m to create closed environments for the 

Turtlebot3 to train in.  Training environments known as “worlds” are created with the goal of the 

Turtlebot3 to learn how to take specific motions, step-by-step, an example of this is a rectangular world 

that is 3.0m x 8.0m in size in this project referred to as Environment-A is used to train the Turtlebot3 to 

move forward without hitting the walls as shown in Figure 2 (a). The starting position of the mobile 

robot is shown in each figure of each environment and is circled in red such as in Figure 2 (b). The 

Turtlebot3 is trained to carry out specific motions in each environment, thus allowing the mobile robot 

to learn basic motions one followed by another before trying to handle more complicated environments 

which require the execution of multiple different motions to traverse without collision. The mobile robot 

will learn how to move in the structured order of (Forward > Turn Left > Turn Right > Turn Back > 

Turn Sharp Left > Turn Sharp Right > Multiple Action). This learning structure ensures that the mobile 

robot has properly learned how to carry out simple motions in fixed environments before carrying out 

more complex combinations of motions to traverse more complicated environments. 
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(a) (b) 

Figure 2. (a) Environment-A and  

(b) Turtlebot3 Starting Position in Red Circle 

2.2. SLAM implementation 

Once the environments have been set-up, Simultaneous Localization and Mapping (SLAM) is used to 

generate maps from the data received from the 2D-Lidar sensor on the Turtlebot3. Since the Turtlebot3 

has a 2D-Lidar Sensor, the maps generated will also be 2 dimensional or 2D as well.  Mapping is one of 

the key aspects of exploration as it is one of the primary outputs desired. The specific SLAM algorithm 

used in this project is called g-mapping and comes with the Turtlebot3 simulated model. The Turtlebot3 

will be manually driven across the environments to see what the output of a completed map of the 

environment should look as well as if the g-mapping algorithm has any limitations when generating 

maps in the different kinds of environments as different SLAM algorithms have their own strengths and 

weaknesses. This mapping will be carried out via the “Teleop Function” which stands for teleoperation 

through a laptop keyboard. 

2.3. Reinforcement Learning in Gazebo Simulation 

Based on previous literature, mobile robot environment exploration and mapping can be achieved 

through the use of reinforcement learning, but exploring unknown environments is more complex than 

navigating to a goal point and suffers from the issue of dimensionality [9]. Deep reinforcement learning 

or reinforcement learning with rapidly-exploring random tree are methods that have been successfully 

used for environment exploration but is complex in implementation [9-10]. Thus, this project aims to 

achieve simplified environment exploration. 

The simulation environments in Gazebo have varying sizes, thus implementing a coordinate- based 

system would be less efficient given larger environments. Besides that, a mobile robot does not teleport 

from one state to another, the robot actually has to move between states, resulting in constantly changing 

orientations. Lastly, the mobile robot is actually relying on its 2D-Lidar to perceive its surroundings and 

does not know what the entire map looks like, making motion through a coordinate system difficult. 

These factors result in the coordinate-based state system being replaced with a 2D-Lidar distance-based 

state system. A select number of Lidar output angles are divided into fixed distances, depending on the 

distance of the closest wall or obstacle within range, the system will return a corresponding alphabet. 

The combination of all selected Lidar angle readings will be used as states for reinforcement learning in 

this project. This results in having a fixed number of states regardless of what kind of environment it is 

applied in as well as not needing knowledge of the overall map or specific coordinate location. 

  

8 2D-Lidar output angles have been selected to be used for state identification. 7 out of the 8 selected 

angles are located in the forward 180° of the mobile robot with an equal angle difference of 30° between 

each selected 2D-Lidar output angle. Each output angle will be divided alphabetically according to the 

4 possible ranges. The default maximum distance measurements of the 2D-Lidar of the Turtlebot3 is 

around 3.2m before returning (inf) as a reading, thus readings equal to or above 3.0m is labelled as (C) 
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which is considered clear in the given direction as there is no obstacle or wall within range to be 

considered, the next range of values will be between 1.5m and 3.0m labelled as (B) which is considered 

as having an obstacle or wall within range but still a safe distance away, followed by values between 

0.5m and 1.5 labelled as (A) which is considered as having an obstacle or wall within range that is close 

to the Turtlebot3. Lastly if there is any obstacle or wall within 0.5m of the mobile robot, it is labelled as 

(e) which is considered dangerously close and is the negative terminal condition. The 2D-Lidar output 

angles and the preset ranges are shown in Figure 3.  The total possible number states for this system are 

equal to (38 + 1) which is 6562. This may seem like a large number at first, but this number is fixed 

regardless of environment unlike the coordinate system which has a varying number of states depending 

on environment size. 

 

  

(a) (b) 

Figure 3. (a) 2D-Lidar Output Angles and (b) Ranges for Reinforcement Learning States 

 

For the actions, the Turtlebot3 has been set to only be able to carry out 6 possible actions (turn left, 

slightly left, forward, slightly right, turn right, stationary rotation). This is more than enough to navigate 

through a controlled environment. Due to the goal of exploration, a traditional goal point is not 

applicable. Thus, to assist in the process of reward shaping without a goal point, the mobile robot will 

have the goal of following the left wall and the rewards for reinforcement learning will be representative 

of this goal. The states experienced by the Turtlebot3 and its corresponding reward values are processed 

through a custom node in ROS that is able to convert the 2D-Lidar information to states and 

corresponding rewards as it receives information from the topic called “/scan” that publishes the 2D-

Lidar data of the Turtlebot3, the information processed by the custom node is then passed to another 

custom node that handles reinforcement learning. Since there are (6561 + 1) possible states and 6 

possible actions, the maximum total data required is (65616) + 1which is 39367 which will be stored in 

a .json file which can store the python dictionary for future application in other environments so that 

learning can be continuous across multiple environments. 

3. Results 

3.1. G-mapping SLAM in Different Environments 

The g-mapping SLAM algorithm cannot estimate the length of a wall well probably due to a long straight 

corridor not having other features to compare to. This is displayed in Figure 4 (b). G-mapping applies 

scan-matching which compares multiple scans to find matching features to combine the scans together 

in the correct orientation. Thus, a larger map with little to no features may result in inaccurate maps 

being generated. 
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(a) (b) 

Figure 4. (a) Environment-A and  

(b) Map of Environment-A 

 

However, due to the large size of Environment-I, and having features that are spread out far enough 

to not be present in every scan, the map produced is increasingly inaccurate as the Turtlebot3 traverses 

across the environment. This is shown in Figure 5 (b). Thus, g-mapping SLAM is applicable but may 

not be the best SLAM algorithm for mapping in this environment and other algorithms can be considered 

for future improvements such as Hector-SLAM or Google Cartographer. 

 

  
(a) (b) 

Figure 5. (a) Environment-I and (b) Map of Environment-I 

3.2. Parameter Analysis for Reinforcement Learning 

There are many variables that can affect the reinforcement learning process and overall output which 

include but are not limited to the learning rate α which affects the speed at which convergence is 

achieved and discount rate γ which determines how important future rewards are to the agent. Thus, to 

analyze the effect of these 2 variables on the overall performance of the Turtlebot3, experiments were 

carried out to determine which values of α and γ result in the best performance in the Turtlebot3 by 

observing the time taken for the Turtlebot3 to traverse Environment-A and generate a complete map. 

Time taken is recorded using a stopwatch application on a smartphone. When different values of α are 

tested, γ is fixed at 0.5, and similarly when different values of γ are tested, α is fixed at 0.5. All other 

variables remain the same, such as episode count at 1500 and the probability of random actions epsilon 

ε. 
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Table 1. Mapping time for Environment-A for Variable α 

 

Variable α Time (s) 

0.2 35.64 

0.3 37.13 

0.4 38.59 

0.5 40.27 

0.6 38.25 

0.7 39.18 

0.8 47.71 

 

Table 2. Mapping time for Environment-A for Variable γ 

 

Variable γ Time (s) 

0.2 38.66 

0.3 39.02 

0.4 38.34 

0.5 40.27 

0.6 39.43 

0.7 38.97 

0.8 36.55 

 

From Table 1 and Table 2, it is shown that generally the lower the value of α, the better the overall 

performance in terms of time to map an environment and the higher the value of γ the better the overall 

performance in terms of time to map an environment. Thus, these values of α and γ will be used in 

training going forward to maximize overall performance. Besides the values of variables used in 

reinforcement learning, another factor that can affect the performance of the mobile robot in exploration 

is the order of the type of environment used during training and the speed at which environment 

complexity is increased. Due to the fact that there are 39367 possible combinations of state and actions 

for the mobile robot to experience, unstructured learning will require very long hours of learning and 

will lead to irregular behaviour. This problem is present in larger environments where the 2-D Lidar 

output can return many more possible combinations of ranges compared to a smaller environment. 

3.3. Repeatability Test 

The last experiment will be to test if the trained robot is able to exploit the knowledge it has gained 

through training in a repeatable manor, a mobile robot that has an unpredictable pattern of motion under 

similar conditions is undesirable as it may carry out actions that are unintended. It is also important that 

the mobile robot is able to fully exploit its knowledge especially during application in a real environment 

as mobile robots shouldn’t carry out actions that could lead it to dangerous situations to prevent 

damaging itself. For this experiment, the trained Turtlebot3 is tested in 3 environments, Environment-

A for basic motion testing, Environment-G for multiple action testing and Environment-I for complex 

environment testing.  

The Turtlebot3 is able to navigate completely through Environment-A without colliding with 

surrounding walls and is able to generate a map consistently as proven in Table 3. The Turtlebot3 is 

unable to fully map environment-G and environment-I however the path taken is consistent.  

The Turtlebot3 is able to traverse through smaller environments of surface area 18m2 and 27m2 and 

generated complete maps. The Turtlebot3 is able to traverse partially through an environment of 45m2 

in size and generated a partially complete map as depicted in Figure 6 (b). Lastly, the Turtlebot3 fails to 

traverse the environment of 100m2 in size and crashes into a corner before it can complete the mapping 

process. This is shown in Table 4. 
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Table 3. Mapping time for Environment-A 

 

No Time (s) 

1 40.27 

2 40.79 

3 40.81 

Average 40.62 

 

Table 4. Performance Across Environments of Different Sizes 

 

No Area of  

Environment (m2) 

Average Time (s) Map Completion 

1 18 40.62 Complete 

2 27 44.74 Complete 

3 45 92.70 Partially Complete 

4 100 - Incomplete 

 

 
 

(a) (b) 

Figure 6. (a) Environment-G and (b) Map of Environment-G 

 

Thus, it can be concluded that the mobile robot is able to learn and apply its knowledge through 

reinforcement learning in a repeatable manner however as the size and complexity of the environment 

increases, the Turtlebot3 is less capable of traversing the environment, this is due to insufficient training 

to be able to handle every possible state of which there are 39367 as the Turtlebot3 was only trained in 

smaller confined spaces. Another issue could be the reward shaping as it is observed that the Turtlebot3 

has trouble turning right as the reward distribution make the Turtlebot3 favour the left. Thus, more 

tuning of variables such as rewards, α and γ can yield better performance. 

4. Conclusion 
In conclusion, Gazebo ROS is an effective tool which can assist robot developers in simulating robots 

and environments for the experimentation or training of robots without the need to own an actual robot 

or construct a real environment. Through the use of the building editor tool in Gazebo, the objective of 

creating simulation environments for mobile robot environment exploration is achieved. Simultaneous 

Localization and Mapping (SLAM) is an essential tool in exploration to generate a map of the 

environment. G-mapping can produce an accurate map of the environment given ideal situations but 

other algorithms can be considered as G-mapping has limitations which make it situational depending 

on the features of the environment. Thus, the objective of implementing SLAM algorithm for mapping 

is achieved. At the end of this project, reinforcement learning was successfully applied to a mobile robot 

to learn how to traverse different environments mostly between 18m2 and 25m2 of surface area however 
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more training is required so that the mobile robot can approach many more kinds of environments 

without failure. The objective of developing a reinforcement learning framework for map exploration is 

achieved but with much room for improvement. The overall project can be improved given more time 

to improve the training speed and experimenting with alternative SLAM algorithms and further tuning 

of variables in the reinforcement learning process. 
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