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Abstract: In-vehicle air quality monitoring systems have been seen as promising paradigms for
monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain
pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system
that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters
in cabin environments. This paper presents a new approach, using deep learning techniques that
can deal with the varying parameters inside the vehicle environment. In this case, two deep learning
models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to
classify and predict the air quality using time-series data collected from the built-in sensor hardware.
Both are compared with conventional methods of machine learning models, including Support Vector
Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent
prediction performance with the highest coefficient of determination value (R2) of 0.97.

Keywords: in-vehicle air quality; machine learning; deep learning; wireless networks; prediction;
smart mobility

1. Introduction

According to the World Health Organization (WHO), approximately 1.35 million fatal
accidents have occurred around the world, and the number is increasing annually [1].
Within this number, the study states that 15% of these accidents are caused by driver
drowsiness and impaired cognition ability. Moreover, agencies such as the American
Automobile Association (AAA) predict that one out of eight accidents in the United States
which require hospitalization happen because of driver drowsiness and fatigue [2]. Thus,
this condition can be seen as a life-threatening event, especially when the driver is cruising
at a high speed, and the damage caused by these accidents is even more severe to public
lives and property.

Drowsiness can be caused by many factors. Among them are chronic driver fatigue,
lack of sleep, and increased CO2 concentration in the vehicle [3]. Some studies show that
the cabin inside a vehicle contains different pollutants that can affect human health such as
carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2) and volatile organic
compounds (VOC) [4,5]. They can cause various health concerns including impaired
vision and physical coordination while driving, as well as dizziness and fatigue to the
occupants [6]. Furthermore, these combinations make it difficult for drivers to operate
vehicles on the road [7,8].

Over time, a new generation of vehicle manufacturers have concentrated on Heating,
Ventilation and Air Conditioning (HVAC) systems to provide a fresh air mode or re-
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circulation (RC) mode options for the occupants. Most HVAC systems use RC modes to
help in reducing the distribution of pollutants and gases which come from the exhaust
system. However, since most of the major air pollutants cannot be seen with human eyes,
drivers are not aware of the air quality inside the vehicle cabin. Nevertheless, they inhale
oxygen and then replace it with carbon dioxide (CO2), which acts as a part of contamination
known as human bio-effluents [9]. The elevated concentration of CO2 reduces individuals’
cognitive ability, which results in drowsiness, dizziness and fatigue [10].

Thus, there is a need to provide monitoring systems that can measure in-vehicle air
pollutants and ultimately monitor drivers’ conditions while driving. Previous studies
used monitoring technologies such as cameras and in-vehicle sensors that are difficult
to install and may constrain the driver’s behavior. Most of the existing systems have
employed artificial intelligence techniques to provide decision-making processes on air
quality [11]. Such approaches include rule-based systems. Although they have made
significant contributions in this area, real-time monitoring systems are still immature and
remain challenging. This may be due to the need to provide various rules in order to allow
the system to work efficiently. Detection accuracy also depends on the parameters inside
the in-vehicle environment, which always vary continuously. Furthermore, these studies
only focused on classifying the air quality in real-time, without having the ability to predict
future conditions [12].

In order to provide accurate prediction tasks, real-time information on various pollu-
tants in the vehicle is required. Up to this date, the information has not been available in an
online and public repository, nor in a constantly updated database. There are only a few
published works which focus on driver drowsiness and its relationship with air pollutants
inside the vehicle. Furthermore, there is little information on the available systems on the
market that can classify and predict the future state of in-vehicle conditions and visualize
them in an interactive visualization mode.

This paper recognizes the above-mentioned limitations and addresses them by propos-
ing a new approach to classify in-vehicle air quality and predict the future state of its
conditions. In this respect, two deep learning models are used to handle the time-series
data, which are Long Short-term Memory (LSTM) and Gated Recurrent Units (GRU). These
methods are then compared with the conventional approaches of machine learning algo-
rithms such as Support Vector Regression (SVR) and Multi-Layer Perceptron (MLP) to
evaluate their performances in terms of performance metrics such as Root Mean Square
Error (RMSE), Mean Absolute Error (MAE) and coefficient of determination (R2).

The remainder of the paper is organized as follows: Section 2 describes the previous
work related to this study. Section 3 gives detailed explanations of the data used and the
methodology applied to predict the future state. Section 4 presents the experimental results.
Finally, Section 5 concludes the study and provides directions for future research.

2. Related Work

Studies in indoor air quality prediction have increased considerably in recent years.
However, most of the main topics have focused on indoor or outdoor environments. It
can be seen that most air quality indexes and standards are introduced for outdoors in
the selected environment. Up to this date, air quality inside the vehicle cabin has not
been included in any standards [13]. Over time, driver monitoring systems have been
developed to monitor and measure drivers’ conditions while they are driving [14]. This
is due to the progression in autonomous driving technologies, which promote precision
driver safety and health [15]. One of the concerns in the driver monitoring system is
drowsiness, a condition due to lack of oxygen and increase of air pollutants from the
outside environment, such as CO, CO2, and NO2 [16]. Furthermore, air pollution is also
a major concern that can affect drivers’ ability to focus on the road [17]. Studies show
that long-term exposure to air pollution puts a high risk on human health, and results in
respiratory and cardiovascular problems, neuropsychiatric complications, skin diseases
and chronic illnesses such as cancer [18].
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Several studies found that a high concentration of CO2 could affect human decision-
making performance. Although not immediately life-threatening, it had a significant
impact, particularly when driving. Ref. [19] reported that seven out of nine cognitive
function domains could be affected by the increase of CO2 concentration in the vehicle
cabin. Prolonged exposure to a high concentration of CO2 (1400 ppm) affected human
cognitive performance significantly, compared with 100% outdoor air ventilation and a
moderate CO2 (~945 ppm) condition. Meanwhile, ref. [20] conducted an experiment by
collecting CO2 concentrations every 5 min with two different air circulation modes. It
found that the CO2 concentration reached 3200 ppm after one hour and human subjects
reported an unpleasant sensation occurring after 25 min. Table 1 presents the rest of the
related work focusing on in-vehicle air quality systems.

Table 1. Related Work on In-vehicle Air Quality System.

Authors Aim Analysis Methods Comments

[13]

Study the air quality
inside the vehicle cabin

during driving and engine
idling.

T-test and Pearson
Correlation model

The authors measured the in-vehicle air quality
during driving and engine idling. They do not
clearly state the difference between the driving
and idling data. However, they found that CO2
and VOC gases exceeded the recommendation

value of the Hong Kong Environmental
Protection Department (HKEPD)

AQI guidelines.

[21]

Use a fractional air
recirculation system to

improve the in-vehicle air
quality

Mathematical model

The authors investigated the ideal ratio based
on the open windows condition to measure the
accumulation of CO2 and reduction of particle

concentration. They state that the ideal CO2
concentration is from 1500 ppm to 2500 ppm.

[22] Test self-pollution inside
cabin vehicle Mathematical model

The authors found a high occurrence of
in-vehicle self-pollution in the test set. PM2.5

contributed a lot to the in-cabin exposure. The
data logging used a laptop as the database.

The study lacked real-time
cloud-based monitoring.

[23]

Apply mobile sensing
system to study the air

quality inside the vehicle
cabin

Time-based presentation

The authors presented the work by using the
local database using a smartphone to record
and show the level of air quality inside the
vehicle cabin. Data collection using several

vehicles showed that the system had
worked successfully.

[24]
Visualize environmental

air quality using software
ExpoLIS

Linear regression

The work utilized installed sensors on vehicles
to measure air quality of the drivers’

environment. All the collected data were
analyzed using ExpoLIS and visualized using a

web-based display.

[25]
Characterize air quality
and thermal profile for
electric vehicle cabin

Time-based data series

The presented work used particulate matter
and VOC as the main parameters. The results
compared recirculation and fresh air modes in

the electric car cabin.

Air Quality Index (AQI) is used as a standard to measure the current air quality in the
surrounding environments. In particular, it measures the state of each air quality parameter
relative to human need or purposes [26]. This helps to show the public the current air quality
and determine whether it has an impact on their health. Several AQIs have been established
in different countries with different names, limit ranges and observation parameters. For
example, the Air Quality Health Index (AQHI) has been introduced in Canada and Hong
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Kong [27]. Singapore utilizes the Pollutant Standard Index (PSI) while Malaysia uses the
Air Pollution Index (API).

Several techniques have been introduced to predict air quality in the in-vehicle en-
vironment. Some use electronic devices that are attached to the driver’s skin to measure
biological signals such as electrocardiography, electrooculography and electromyogra-
phy [28]. They monitor variations in the brain signal and determine cognitive ability and
psychological state for driving. Another approach involves the use of cameras, where visual
information is obtained on the driver’s behavior [29]. Visual characteristics including the
eyes and mouth are analyzed to detect signs of drowsiness or distraction such as yawning
and eye activity. In recent years, new technology involving multi-modal sensors that can
analyze drivers’ bio-signals has been emerging [30]. This includes the concentration of air
pollutants in the car as well as particulate matter. The method is very convincing, as these
gases can affect decision-making ability and information usage. Table 2 represents examples
of pollutant gases that can affect a driver’s ability to drive properly in the in-vehicle cabin.

Table 2. Common Air Pollutants Found in In-vehicle cabin [31–33].

Air Pollutant Health Effect

Carbon Dioxide (CO2)

Fatigue, drowsiness, headaches, dizziness, restlessness, a
tingling or pins and needles feeling, difficulty breathing,
sweating, tiredness, increased heart rate, elevated blood

pressure, coma, asphyxia and convulsions.

Carbon Monoxide (CO)
Headache, fatigue, dizziness, drowsiness, nausea,

confusion, and collapse, in addition to loss of
consciousness and muscle weakness.

Ozone (O3) Chest pain, coughing, throat irritation and congestion or
worsening bronchitis, emphysema and asthma.

Particulate Matter (PM)

Premature death in people with heart and lung diseases.
Aggravated asthma, decreased lung function and

increased respiratory symptoms such as coughing and
difficulty breathing.

Temperature Heat cramps, heat exhaustion, heatstroke
and hyperthermia.

Humidity Excessive sweating, increased rate and depth of blood
circulation and increased respiration.

With respect to the prediction system, artificial intelligence approaches have been
widely used. Other traditional prediction methods use statistical techniques and mathe-
matical models such as linear regression, principal component analysis (PCA) and multiple
linear regression [34]. In addition, machine learning approaches such as Support Vector
Machine (SVM) and Decision Tree (DT) are also used to classify air quality [30]. However,
traditional prediction techniques are ill-suited for time-series applications, and prediction
results always depend on the historical data [35]. Furthermore, features have to be se-
lected and manually handcrafted each time the environment changes. This contributes to
time-consuming and ineffective classification systems [36].

In recent years, studies have shown that deep learning models have an excellent
capability of dealing with time-series data as well as with long-term dependencies of air
quality prediction data. In particular, deep learning has gained increasing interest in the
prediction field. The model contains hidden layers that have the capability of learning data
patterns autonomously [37]. Furthermore, deep learning has advantages compared with
other traditional approaches. These include the ability to extract features automatically
without having to undergo handcrafted feature extraction. Moreover, deep learning utilizes
the use of shallow features which are difficult to use with traditional methods. With respect
to this study, researchers have applied a deep learning model to predict air quality. For
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example, ref. [38] applied an LSTM and Deep Autoencoder model to predict air quality in
Seoul, South Korea. The study showed high prediction results using parameters such as
PM10 and PM2.5. Moreover, ref. [39] also used particulate matter as the main parameter.
The study applied LSTM and GRU models to predict air quality, and found that GRU had
the highest performance rates compared to the LSTM model. Most of the studies only
focused on indoor or outdoor air quality. In addition, the learning models were performed
post-analysis, rather than in real-time systems.

From the review, it can be seen that most of the presented work focused on air quality
prediction for indoor or outside environments. This paper has a different viewpoint, from
which it investigates the capability of deep learning algorithms to predict air quality inside
the vehicle cabin. The work compares the performance of deep learning with traditional
machine learning algorithms using several parameters such as CO2, particulate matter,
temperature and humidity. This is important to ensure the safety of driver and passengers
when driving vehicles on the road.

3. Proposed Method
3.1. Overall System Design

An integrated in-vehicle air quality monitoring system was developed for this study.
The system is composed of multi-modal sensors that are integrated together to monitor
gasses components in the vehicle cabin. Figure 1 presents the overall system architecture.
It consists of three main sensors and one communication module. These sensors are used
to monitor several parameters, including CO2, PM2.5 and PM10, temperature and humidity.
In addition, the SIM808 GSM communication module is used to provide the speed and
location of the vehicle.
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Figure 1. Overall System Design for Air Quality Prediction.

The data collection process starts by initializing elements and peripherals on the mul-
tiple sensors in the device node. The initialization time is set to thirty seconds to make sure
that all the sensors are properly connected to the cloud server. The connection between the
sensor device and the cloud database is performed using the Message Queuing Telemetry
Transport (MQTT) messaging protocol. Once established, the process of collecting data
using a microprocessor starts. The sensor data is divided into different buffers and encap-
sulated into the MQTT protocol format. The data is then pushed to the cloud. In the case of
an unsuccessful connection, the microcontroller checks the MQTT network connection and
continues the collection process so that there are no data left unsampled. Figure 2 presents
the complete flowchart of the process sequence.
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Figure 2. Flow Process of the Overall Operation Sequence.

The collected data is processed and sorted in the cloud database. Device nodes located
in the vehicle cabin are assigned their unique identifier (ID) to avoid any mislocation of
data entry. Furthermore, a database handler is developed to reject distorted data entry and
invalid device ID. Finally, a web page display is developed to view the real-time sensor
data of air quality status in the vehicle cabin. The visualization helps users to learn the data
patterns of the in-vehicle air quality system.

3.2. Sensor Development

Figure 3 presents the hardware of the device node. The hardware power supply is
supplied using the in-car charger, where the voltage ranges from 11.9 V to 14.8 V. From the
experiment, it can be seen that the voltage value is not fixed. The value fluctuates from
time to time within the voltage range. A step-down process is then performed using a
transformer in the device, to allow the use of different voltage supplies from the sensors.
These sensors only need 3.8 V to operate. Therefore, a step-down process is important to
avoid a short circuit and subsequently damaging the device node.
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3.3. Air Quality Prediction

In this study, the output of the prediction system is based on the air quality index
(AQI). It acts as an indicator to determine whether the environment is composed of air
pollutants that can affect human health. The study selects several parameters such as CO2
and particulate matter (PM2.5 and PM10) as well as time, latitude, longitude and speed.
Based on the identified parameters, the study proposes to predict the future index of air
quality inside the vehicle cabin, using an established indoor air quality standard as a guide.
Table 3 shows the pollutants concentration guidelines used to obtain the AQI value.

Table 3. Concentration Value for Measuring AQI.

CO2 (ppm) PM2.5 (µg/m3)e PM10 (µg/m3)e AQI Five Bands of
AQI

BPlow-BPhigh BPlow-BPhigh BPlow-BPhigh Ilow-Ihigh

400–600 0.0–12.0 0–54 0–50 Good

601–1000 12.1–35.4 55–154 51–100 Moderate

1001–1500 35.5–55.4 155–254 101–150 Unhealthy for
sensitive group

1501–2500 55.5–150.4 255–354 151–200 Unhealthy

2501–5000 150.5–250.4 355–424 201–500 Very unhealthy

The function of the value concentration is to classify and indicate the risk of adverse
health effects on the occupants. Using Table 3, the in-vehicle air quality parameters can be
categorized into five bands to form their own class of AQI. Each of the bands has a value
to represent the air quality of a specific air parameter. The value of AQI can be calculated
using Equation (1). For example, the air sensor reading is recorded as CO2 = 1600 ppm,
PM2.5 = 11.3 µg/m3 and PM10 = 39 µg/m3. Each of the parameters will be calculated using
Equation (1). After the calculation, CO2, PM2.5 and PM10 fall into the AQI of band four
(155.8), band one (12.1) and band one (36.1), respectively.

AQI =
IHi − ILo

BPHi − BPLo

(
Cp − BPLo

)
+ ILo (1)
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where
Cp = the rounded concentration of pollutant p
BPHi = the breakpoint that is greater than or equal to Cp
BPLo = the breakpoint that is less than or equal to Cp
IHi = the AQI value corresponding to BPHi
ILo = the AQI value corresponding to BPLo

3.4. Data Collection

The data collection is conducted inside the vehicle cabin. The duration of the data
collection process is approximately two months, with an average usage of two hours each
day. The experiments are performed using built-in sensors located in the car cabin, as in
Figure 4.
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Figure 4. Representation of Sensor Device in Vehicle Cabin.

The sensors are powered up using an in-car adapter charger and placed between the
driver seat and passenger seat. The cabin condition is set to recirculation mode with the air
conditioner always turned on. This is to make sure that it represents the real-life scenarios of
drivers while driving the car. The experiment is then separated into two different time slots.
Firstly, data is taken in the morning, between 06:00 and 08:00. Another set of experiments
is then conducted in the evening, between 13:00 and 15:00. Overall, the traveling distance
during the experiments reached a total of 875 km for 19 days (between June 2019 and July
2019). Figure 5 shows the average daily traveling distance, which was approximately 46.1
km per day. Meanwhile, Table 4 depicts the overall size of data samples that were collected,
based on monthly and periodic sections throughout the data collection process.
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Table 4. Description of data features and sample sizes for data collection process.

Collection Site Parameter

Monthly
Number of records 48,816

Size 3,593,866 bytes (3.59 MB)

One section
Number of records 1184

Size 92,160 bytes (0.09 MB)

Value types
Twelve air quality variables (time, latitude,

longitude, speed, CO2, temperature,
humidity, PM1, PM2.5, PM10, count, label)

4. Prediction Models
4.1. Data Pre-Processing

The initial stage of developing an efficient prediction model is the data pre-processing,
which consists of data cleaning, data labelling and data normalization. Data pre-processing
is needed as it can help to clean the data and take significant patterns before giving them
to the prediction models. This is because the collected sensor data consists of noisy and
meaningless information and sensor errors which are known as outliers, as well as missing
data. Thus, improper processing of the datasets can lead to inaccurate and unreliable
prediction models which result in underperformed performance rates of the predictive or
classification model.

In the data pre-processing, the data cleaning process is first performed. The task uses
the nearest-neighbor interpolation method. The method is suitable for datasets that have
missing values or outlier conditions. Equation (2) shows the mathematical formula for
the nearest-neighbor method [40]. When any of the outlier values occur in position xi, the
value of the closest known neighbor is then used to substitute the outlier value. Moreover,
if the number of outliers is greater than five, the average of the five previous data will then
be used to substitute back in the original outlier values.

xi =



xi−1+xi−2
2 , i f i = 2;

xi−1+xi−2+xi−3
3 , i f i = 3;

xi−1+xi−2+xi−3+xi−4
4 , i f i = 4;

xi−1+xi−2+xi−3+xi−4+xi−5
5 , otherwise

(2)

where xi is the outlier value.
Data labelling is the second part of the data pre-processing step. The process is needed

as the prediction model uses the supervised learning approach, in which the model should
have a ground truth or a set of labelling output data. The labelled data functions for the
orientation of the training and testing process for the target in the AI predictive model.
Multiple raw data from the device node in the vehicle cabin such as CO2, PM2.5, PM10,
vehicle speed, temperature, and humidity are used as the input data. The output data is
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calculated using the air quality index stated in [41]. Subsequently, data normalization is
implemented to help the prediction model to capture the significant patterns. The function
of the normalization process is to convert the numeric values in the dataset into a set with 0
to 1 range. The process is conducted without changing the original characteristics of the
dataset. In this study, the normalization procedure uses the Min-Max method.

4.2. Deep Learning Models

The study uses two types of algorithms from machine learning and two algorithms
from deep learning methods. The models are used to predict the state of the air quality
index inside the car cabin. They are built based on historical data collected over two
months.

The proposed approach is divided into machine learning algorithms of SVR and
MLP, while deep learning methods are composed of LSTM and GRU models. These
models are chosen as they provide a good performance when dealing with time-series
data. Furthermore, the real-world dataset that is used in this study is composed of a three-
dimensional data structure with timestamps associated with each of the sensor readings.
Therefore, the use of LSTM and GRU is the most suitable learning model that can handle
the time-series data.

The learning model utilizes data from sensors such as CO2, PM2.5, PM10, vehicle
speed, temperature, and humidity. Firstly, the data from these sensors are presented in the
two-dimensional data representation. After this, multiple rows are combined to create a set
of three-dimensional data, as shown in Figure 6.
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The structure of this multiple sequence prediction method is used to predict air quality
in a step-by-step sequence. To predict value X ˆ_(t + 1) at timestamp t + 1, previous historical
data X_1, X_2, X_3, . . . , X_t, which are known as time lags, are required. When generating
the next prediction value of X ˆ_(t + 2), X ˆ_(t + 1), data is fed back into the dataset. The
process flow will continue until the designed moving windows are completed. The GRU
model is composed of three hidden layers with a sigmoid activation function applied to
each layer. The output layer is computed using a dense function, which compresses the
three-dimensional data to one-dimensional data. Adam optimization is then implemented
in the training model to calculate the probabilistic errors between the ground truth and
output of the prediction model. Figure 7 shows the proposed overall structure for the deep
learning model. It is implemented in the multiple sequence prediction task.
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4.3. Hyperparameter Testing

The next step is to set the hyper-parameters for the prediction model to work effectively.
The efficiency of the model could be affected based on the parameter settings of the model.
For example, learning rate, number of hidden nodes and hidden layers play an important
part in building an effective prediction model. If the value is not in the optimum mode,
the output of the learning model may contribute to overfitting problems. In this study,
the grid-search method is utilized to find the optimum parameters of the learning model
that can be used. The method employs an optimization algorithm that can select the best
parameters by dividing the domain of the hyper-parameters into a discrete grid. Then, the
performance metrics of the model are calculated in each grid, using the cross-validation
tool. Table 5 presents the range of hyperparameters that are determined and applied in the
predictive models.

Table 5. Range of Hyperparameters of the Predictive Model.

Hyperparameter Value

Hidden layer {1–5}

Hidden node {23–210}

Learning rate {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}

Iteration {23–212}

Split {0.7, 0.8}

5. Experimental Results

The comparison process was performed to evaluate which approaches gave the best
performances. It was carried out between the machine learning and deep learning models.
The machine learning algorithm was represented by SVR and MLP, while deep learning
models were comprised of LSTM and GRU, which are the variant models from Recurrent
Neural Network (RNN). In this paper, SVR and MLP are regarded as the machine learning
approach because they have not been provided with the recurrence feedback to update



Atmosphere 2022, 13, 1587 12 of 16

the weight and bias. However, for the deep learning approach, both the LSTM and GRU
models were provided with recurrent feedback to improve the weight and bias values that
were used.

The hyperparameter values were decided using the grid-search method. Table 6
presents the specific value of the hyperparameters that were applied using the grid-search
method. It can be seen that tuning in these parameters impacts greatly the prediction results.
The structures of MLP, LSTM and GRU are much more similar, as they are composed of a
similar branch of learning model, while SVR is different in terms of different parameters
such as kernel, kernel coefficient, and regularization parameter.

Table 6. Hyperparameters Implemented in the Prediction Task.

Hyperparameters
Machine Learning Deep Learning

SVR MLP LSTM GRU

Kernel RBF - - -

Regularization 501.19 - - -

Hidden layer 1 1 3 3

Hidden node - 128 64 + 512 + 128 64 + 512 + 256

Learning rate 0.001 0.001 0.01 0.001

Iteration 10,000 2000 1500 1800

Split 0.8 0.8 0.8 0.8

Optimizer - Gradient
descent Adam Adam

Activation Function - Sigmoid Hyperbolic
tangent

Hyperbolic
tangent

The next process was to build the prediction models with the predefined hyperparam-
eters that were determined in the previous process. The collected data was used to build
the proposed models. The input for the training and validation model was divided into
80% and 20%, respectively. The training data were also based on the section and monthly
data. Table 7 presents the performance of the proposed models validated by the section
and monthly data. The result clearly shows that the SVR with RBF kernel and GRU models
had almost the same performance index in the evaluation results. However, the proposed
GRU prediction model presented much higher performance rates in terms of prediction
accuracy and reduced error rates. The GRU model obtained the R2 value of 0.83 for the
section data and 0.97 for the monthly data.

Table 7. Overall Results of Proposed Model based on Section and Monthly Data.

Data Evaluation
Machine Learning Deep Learning

SVR MLP LSTM GRU

Section

R2 0.83 0.57 0.65 0.83

MSE 126.43 453.31 263.48 121.84

RMSE 11.24 37.23 16.23 11.04

MAE 1.52 21.98 1.93 1.55

Monthly

R2 0.96 0.72 0.96 0.97

MSE 23.62 212.48 28.18 6.45

RMSE 4.86 14.58 5.31 2.54

MAE 0.97 11.57 0.82 0.95
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Lastly, the final step was to evaluate the performance of the prediction of in-vehicle
air quality. Table 8 shows the results of the future prediction data. It compares the three
types of time periods: five minutes, ten minutes and twenty minutes. It can be seen that
the prediction of the five-minute data had a slightly higher performance rate, compared
with the ten- and twenty-minute data predictions. The results also show that the proposed
GRU prediction model gave a very stable evaluation performance across the three types of
data. Meanwhile, Figure 8 shows the graph visualization of the prediction results, using
the proposed GRU prediction models compared with the actual data.

Table 8. Results of Prediction Data for Three Types of data.

Time (min) Evaluation
Machine Learning Deep Learning

SVR MLP LSTM GRU

5

R2 0.02 0.00077 0.81 0.97

MSE 833.67 249.43 160.49 23.63

RMSE 28.87 16.08 12.67 4.86

MAE 23.48 248.77 248.77 0.95

10

R2 0.0005 0.013 0.76 0.96

MSE 865.99 251.09 205.02 26.93

RMSE 29.51 16.08 12.67 5.19

MAE 23.39 248.77 248.77 1.01

20

R2 0.0003 0.013 0.74 0.92

MSE 923.8 251.09 189.62 55.78

RMSE 30.39 16.08 13.77 7.47

MAE 24.18 248.77 2.1 1.18
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6. Conclusions

After an extensive series of experiments, it can be concluded that the GRU model from
the deep learning approach gives a good performance in predicting in-vehicle air quality.
The model was compared with the LSTM model as well as with SVR and MLP from the
traditional machine learning models. The proposed model achieved the highest prediction
error of 0.97 for R2. Furthermore, the GRU model also showed the lowest error in terms
of MSE, RMSE and MAE. From these experiments, it can be seen that the performance of
the prediction system depends on the time taken to collect the data. From the result, the
GRU model with five-minute data had the highest performance compared with the ten-
and twenty-minute data.

Moreover, the model’s hyperparameters were also optimized using the grid-search
method. This allowed the optimum value to be used for the model to predict air quality.
The overall results showed that the GRU model was able to capture the historical data of
installed sensors and predict them successfully. However, some limitations were noted
throughout the study. It can be seen that some data are missing due to the loss of inter-
net connectivity. Furthermore, the in-vehicle system needs to be provided with reliable
communication systems in order to provide an efficient prediction system

For future work, the model will be embedded in the cloud database for faster data
processing. This task can be extended to various applications of prediction systems for
smart mobility applications. Furthermore, the feature extraction process can be conducted
before performing the prediction task. The goal is to autonomously extract relevant features
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for representing environmental conditions and to compare the performance rates with
non-extracted feature methods.
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